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Abstract

Ž .The general theory of Ragone plots for energy storage devices ESD is discussed. Ragone plots provide the available energy of an
ŽESD for constant active power request. The qualitative form of Ragone plots strongly depends on the type of storage battery, capacitor,

.SMES, flywheel, etc. . For example, the energy decreases as a function of power for capacitive ESD, but increases for inductive ESD.
Ž .Analytical results for a representative set of ideal ESD battery, capacitor, and SMES are compared. Furthermore, the effect of leakage

Ž .and of the specific loss type Coulomb, Stokes, and Newton friction is discussed for inductive ESD. Finally, we address the problem of
how composite ESD should be treated, and illustrate it for a battery with inductance. q 2000 Elsevier Science S.A. All rights reserved.
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1. Introduction

Ž .Energy storage devices ESD are characterized by the
w xenergy and the power being available for a load 1,2 . A

prominent example is the comparison of conventional bat-
teries and capacitors. While batteries have high energy

Ž 5 .densities about 10 Jrkg specific energy but only low
Ž .power densities below 100 Wrkg specific power , capaci-

Ž 6 .tors have rather high power densities about 10 Wrkg
Ž .but low energy densities about 100 Jrkg . Batteries,

capacitors, flywheels, superconducting magnetic energy
Ž .storage devices SMES , pressure storage devices, etc., are

thus located in characteristic regions in the power–energy
plane. Typical examples are shown in Fig. 1. These re-
gions are related to specific applications by energy and
power requirements. The boundaries of the regions are
determined by internal losses andror leakage, etc., of the
various ESD. The characteristic time of an application is of
the order of the energy-to-power ratio of the ESD. In the
log–log plane of Fig. 1, the time corresponds to straight
lines. Obviously, batteries are useful for long time applica-
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Ž .tions )100 s , while conventional capacitors are useful
Ž .for short time applications -0.01 s .

Since the efficiency of an ESD is usually dependent on
the working point, a single device belongs to a whole

Ž .curve in the energy–power plane see inset of Fig. 1 .
These so-called Ragone plots , which are usually presented
in a log–log plot, are standard in the battery community

w xsince a long time 1 . First, they provide the limit in the
available power of a battery or a capacitor. Secondly, they
provide the optimum region of working, which is given by
the part of the curve where both energy and power are
high. The aim of this paper is to present a unified discus-
sion of the qualitative behavior of Ragone plots for differ-
ent ESD. Here, we will focus on the specific curves rather
than on the specific regions where these curves are located.
It turns out also that the specific form of the Ragone curve
depends on internal loss and leakage properties of the
ESD. A typical qualitative behavior of a Ragone curve is
sketched in the inset of Fig. 1. Consider for example a
capacitor or a battery. The internal self discharge leads to a
decrease of the energy that can be utilized, if the character-
istic time of the application exceeds the self discharge
time. This fact corresponds to a drop of the Ragone curve
for sufficiently low power. On the other hand, the effective
series resistance leads to a lower time limit and thus to a
maximum power. It is clear that, irrespective of the type of
ESD, there are always physical limits to minimum and
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Fig. 1. Ragone plane: available energy of an energy storage device for
fixed power. Different types of energy storage devices are typically
located in different regions. Characteristic times correspond to lines with

Ž .unity slope. Every energy storage device is represented by a curve E P
Ž .inset . Internal dissipation and leakage losses lead to a drop of the energy
for sufficiently high and low power.

maximum speed of discharge of an ESD. These limits are
reflected in the lowrhigh power behavior of the Ragone
plot.

In the next section, we introduce the general class of
ESD that will be investigated, and we propose a mathemat-
ical definition of the Ragone plot. In Section 3, we discuss
two specific cases of potential ESD, which may be inter-
preted as ideal battery and capacitor. In Section 4, the
Ragone plot of a purely inductive ESD is studied, which
may be interpreted as a SMES or a flywheel. Furthermore,
the effect of various types of friction forces in kinetic ESD
is addressed. Section 5 provides a brief discussion of the
stability problem of circuits containing a constant power
load; as a particular example, we discuss the battery with a
series inductance.

2. Ragone plots

Consider the general circuit of Fig. 2. For example, the
Ž .ESD may consist of a voltage source, V Q , depending on

the stored charge Q, an internal series resistor, R, and an
internal inductance, L. Note that this ESD can describe
many kinds of electrical power sources. For example, a
current source delivering a current I can be described by0

Ls0, and R, V™`, with VrR™ I . The ESD is con-0
Ž .nected to a load which draws constant active power

PG0. Of course, in general such a load is not related to a
Ž .constant resistance except for the battery , but requires

control engineering. We assume first that the load has no
Žreactive power. In Section 5, we show that in general an

.additional apparent power must be considered. The cur-
rent I and voltage U at the load are then related nonlin-
early by UsPrI. Provided reasonable initial conditions,

˙ ˙Ž . Ž .Q 0 sQ and Q 0 sQ , are given, the electrical dynam-0 0

ics is governed by the following ordinary differential
Ž . Ž .equation ODE for Q t ,

P
¨ ˙LQqRQqV Q sy , 1Ž . Ž .

Q̇

where the dot indicates differentiation with respect to time.
This equation applies not only to electrical ESD but covers

Žmany kinds of physical systems mechanical, hydraulic,
. Ž .etc. . For example, identifying L, R, and V Q sdWrdQ

Ž . Žwith inertia mass , Stokes friction constant, and a negat-
. Ž .ing force, respectively, the left hand side of Eq. 1 is

Newton’s equation for the coordinate Q of a mechanical
particle in the potential W. The right-hand side describes a
force acting on the particle and leading to an energy
release with power P. A similar equivalence holds for
flywheels where Q denotes the angle coordinate.

Even without reference to a specific physical interpreta-
Ž .tion of Eq. 1 , we can define the Ragone curve as follows.

At time ts0, the device contains the stored energy,
˙2 Ž .E sLQ r2qW Q . For tG0, the load draws a con-0 0 0

Ž . Ž .stant power P such that Q t satisfies Eq. 1 . It is clear
that, for finite E and P, the ESD is able to supply this0

Ž .power only for a finite time, say ts t P . A criterion is`

given either by the time when the storage device is cleared
or when the ESD is no longer able to deliver the required
amount of power. Since the power P is time independent,

Ž . Ž . Ž .the available energy is E P sPt P . The curve E P`

versus P corresponds to the Ragone plot. This approach is
in fact independent of the specific ESD, which is the
reason why we call it ‘general theory’ of Ragone plots.
Note that our definition is different from the definition

w xdiscussed by Pell and Conway 3,4 . These authors con-
Ž .sider the energy of the ESD but not Pt P .`

Fig. 2. General circuit associated with Ragone plots: the energy storage
Ž . Ž .device ESD feeds a load with constant active power consumption P.

The ESD contains elements for energy storage. Due to constant power,
Ž .energy supply occurs only for a finite time, t P . The energy available`

Ž .for the load, E P s Pt , defines a Ragone plot.`
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Ž .Before we calculate E P for a few idealized cases, we
mention the trivial case without internal loss, Rs0 . It is
clear that for any reasonable ESD the full energy is then
available and t sE rP, such that the Ragone curve` 0
Ž .E P sE is constant for all PG0. The reader can easily0

convince himself that the results below will reproduce this
behavior in the limit of vanishing losses and leakage.

3. Storage of potential energy

In this section, we consider ESD without inductance
Ž .Ls0 . We focus on the particular cases of an ideal
battery and an ideal capacitor. ‘Ideal’ means that there is
neither frequency dependence nor an intrinsic nonlinearity
Ž .e.g. faradaic contributions, pseudo-capacitance, etc. . Bat-
tery and capacitor differ in their charge dependence of
Ž . Ž .V Q in Eq. 1 .

3.1. Battery

Ž .The ideal battery with capacity Q inset Fig. 3 is0
Ž .characterized here by a constant charge independent re-

versible cell voltage, VsU if Q GQ)0 and Vs0 if0 0

Qs0. In a first step, we disregard the leakage resistance
Ž . Ž .R . Eq. 1 reads PsUIs U yRI I, where U is theL 0

˙terminal voltage and IsQ is the current. The solutions of
this quadratic equation are

2U U P0 0
I s " y . 2Ž .(" 22 R R4R

In the limit P™0, the two branches correspond to a
discharge current I ™U rR and to I ™0. For the idealq 0 y
battery, the constant power sink can also be parameterized
by constant load resistance, R . The two limits belongLoad

Ž . Žthen to R ™0 short circuit and R ™` openLoad Load
.switch , respectively. Clearly, in the context of the Ragone

plot, we are interested in the latter limit, such that we have
Ž .to take the branch with the minus sign, I' I , in Eq. 2 .y

Now, the battery is empty at time t sQ rI, where the` 0

initial charge Q is related to the initial energy by E s0 0

Q U . It is now easy to include the presence of an ohmic0 0

leakage current into the discussion. The leakage resistance
R increases the discharge current I by U rR . TheL 0 L

energy being available for the load becomes

2 RQ P0
E P sPt s . 3Ž . Ž .b ` 2(U y U y4RP q2U RrR0 0 0 L

Ž .Eq. 3 corresponds to the Ragone curve of the ideal
Ž .battery. In the presence of leakage, E 0 s0 and thereb

2exists a maximum at PfU r 2 RR . Without leakage(0 L
Ž .RrR ™0 , the maximum energy is available for vanish-L

Ž . Ž .ingly low power, E P™0 sE . From Eq. 3 , oneb 0

concludes that there is a maximum power, P sU 2r4R,max 0
Žassociated with an energy E r2 here, we neglected a0

Fig. 3. Solid curves: Ragone plots of an ideal battery with and without
Ž .leakage resistance R . Dashed curve: secondary branch of the energy–L

Ž .power relation, not useful for a Ragone curve see text . Inset: constant
power load P connected to a battery with capacity Q , ESR R, and0

leakage resistance R .L

.small correction due to leakage . This point is the endpoint
of the Ragone curve of the ideal battery, where only half
of the energy is available while the other half is lost at the
internal resistance.

Let us finally express the Ragone plot for the battery in
the dimensionless units e sE rQ U and ps4RPrU 2

b b 0 0 0

1 p
e p s . 4Ž . Ž .b 2 '1y 1yp q2 RrRL

Ž Ž ..Ragone curves Eq. 4 with and without leakage are
shown in Fig. 3. The branch belonging to I is plotted byq
the dashed curve. A more detailed description of batteries
including Tafel polarization, concentration polarization,
etc., is discussed in a different way by Pell and Conway
w x3 .

3.2. Capacitor

Ž .The case of an ideal electric capacitor inset Fig. 4 is a
little more laborious than the case of the ideal battery,
since now an ODE rather than an algebraic equation has to

Ž .be solved. The electric potential V Q sQrC depends
linearly on the charge via a capacitance C. It is convenient

Ž .to derive from Eq. 1 an equation for the voltage drop at
˙the load, UsPrIsQrCyRI with IsyQ. Differenti-

ating both expressions for U with respect to time, replac-
˙ing I in the first expression with the help of the second

one, and multiplying by U leads to the following ODE for
U 2

RP dU 2 2 P
1y sy . 5Ž .2ž / d t CU
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Fig. 4. Normalized Ragone curve for the capacitor. Inset: constant power
load P connected to a capacitor with capacitance C and ESR R.

Separation of variables and integration gives the solu-
tion

C U 2
2 2t U s RP ln qU yU . 6Ž . Ž .02ž /ž /2 P U0

It turns out that there exists a turning point with d trdU
s0, where the capacitor is no longer able to supply the
required power P. One finds for the corresponding value

' Ž .of the voltage U s RP assuming positive U . Note that`

in contrast to the battery, the capacitor is not empty at
Ž .t s t U , but there is a residual energy E s2 RCP. This` ` `

relation already anticipates the existence of a maximum
power P sE r2 RC. The time t is reached when themax 0 `

capacitor is no longer able to supply the required power P.
In order to calculate the Ragone plot, E sPt , one has toc `

Ž .be careful. Indeed, U in Eq. 6 depends on P, because0

U sUqRIsUqRPrU is the voltage drop at the ca-C

pacitance. Hence, the Ragone curve of the capacitor is

C RP
2E P s RP ln qU yRP , 7Ž . Ž .c 02ž /ž /2 U0

2U UC ,0 C ,0
U s q yRP , 8Ž .(0 2 4

where the initial capacitor voltage U is related to theC,0

total energy by E sCU 2 r2. Note, as for the battery, we0 C,0

had to choose U out of two branches. However, we willC,0

not discuss the secondary branch, which is irrelevant for
our purposes. As mentioned above, there exists a maxi-
mum power P sU 2 r4R that can be delivered by themax C,0

capacitor and for which E ™0. Our results differ fromc
w xthose of Pell and Conway 3 , who find a finite energy for

P™P . The reason lies in the different definitions of themax
Ž .Ragone curves, E P . For vanishing power, P™0, the

whole energy E is available. In the presence of leakage, it0
Ž .holds E P ™0 for P™0, as for the battery. However,c

this case will not be discussed here, since the discharge
time of a capacitor is much shorter than usual leakage
times. In the dimensionless units e s2 E rCU 2 andc c C,0

ps2 RCPrE , the Ragone curve reads0

1 2'e p s 1q 1yp yp 9Ž . Ž .Ž .c ž4

2'1q 1ypŽ .
yp ln . 10Ž .ž /p /

This result is shown in Fig. 4.

4. Storage of kinetic energy

Inductive or kinetic ESD store energy exclusively as
Ž Ž ..kinetic energy coming from the L-term of Eq. 1 , i.e.,

V'0. In contrast to storage of potential energy, where
Ž .load-free losses P™0 are related to a separate ‘leakage’

property, the kinetic ESD dissipates energy due to internal
Ž .friction, related to R in Eq. 1 . In practice, inductive ESD

have thus very small friction forces or internal resistances.
We will show that internal friction influences kinetic ESD
only at low power, and that the qualitative behavior of the
Ragone plot is insensitive to the specific friction among
the most common types. At high power, the energy turns
out to be limited by a finite bypass resistance.

4.1. SMES

In the following, we consider a SMES where energy is
stored inductively, i.e., in the magnetic field of the induc-

Ž .tance L inset Fig. 5 . Nevertheless, the following discus-
sion holds also for other kinds of inductive storage de-

Fig. 5. Normalized Ragone curves for the inductive ESD with Coulomb
Ž . Ž . Ž .C , Stokes S , and Newton N friction. The dashed double-dotted curve
corresponds to a SMES with an ohmic bypass, 4RrR s0.001. Inset:b

constant power load connected to a SMES with inductance L, ESR R,
and bypass resistance R .b
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vices. The stored energy is E sLI 2r2, where L is the0 0

inductance and I is the initial loop current. At time ts0,0

the loop is opened by inserting a high resistance R andb

immediately closed by connecting it in series to the con-
stant power load.1 The series resistance R consists of all
losses in contacts, switches, etc., except the losses in the
load. Consider first the case where the bypass resistance

Ž .can be disregarded, R ™`. The basic Eq. 1 reduces to ab

first-order ODE for the current, Ld Ird tqRIsyPrI.
ŽBy the way, the mechanical interpretation corresponds to
a deceleration of a moving particle with velocity I at

.constant power gain. Multiplication with I leads to the
following ODE for the kinetic energy, W sLI 2r2,kin

dW Wkin kin
q qPs0, 11Ž .

d t t L

where t sLr2 R is the energy relaxation time. TheL
Ž . Ž .solution of Eq. 11 with initial condition W 0 sE iskin 0

L P PL
2 ytrt LW t s I q e y . 12Ž . Ž .kin 0ž /2 R 2 R

In the inductive case, there is only a single solution
Ž .branch. The storage device is empty when W t s0.kin

Ž Ž ..Solving this for t s t P yields for the Ragone curve`

PL RI 2
0

E P s t Ps ln 1q . 13Ž . Ž .i ` ž /2 R P

The ideal inductive ESD show a behavior fully different
from an ideal device storing potential energy without
leakage. In particular, E™0 for P™0, and E™E fori i 0

P™`. The total energy is available for fast energy con-
sumption, while for low power everything is lost in R.
This becomes clear in the framework of the particle pic-
ture. Drawing energy from a moving particle requires the
action of a friction force, which in turn diminishes the
particle’s velocity. If this friction force is much weaker
than internal friction, the total energy is dissipated inter-
nally and only a small fraction of the energy is available
for the constant power load.

In reality it is of course not possible to get arbitrarily
large power. Cutoffs must exist for all kinds of ESD and
for both limits P™0 and P™`. Similar to the leakage
resistance of a battery, which becomes important at P™0,

Žfor a SMES the bypass resistance R e.g., via the powerb
.electronics must be taken into account for P™`. This

means that the load current I is the total current I minusP

the bypass current I . Since the voltage across the loadb

and the bypass is given by PrI sR I , one finds for theP b b

1 We mention that the switch problem is technically non-trivial; how-
ever, here we are mainly interested in the principal response of an
inductive ESD.

2Ž .(load current I s Iq I y4PrR r2. Consequently,P b

the differential equation for the SMES current becomes

2 P
˙LIsyRIy . 14Ž .

2(Iq I y4PrRb

Ž .It is clear from Eq. 14 that there exists a maximum
2 Ž .power value P sR I r4. Eq. 14 is solved by firstmax b 0

transformation to the variable W , and then separation ofkin

the variables t and W. One ends with an integral expres-
Ž . Ž .sion for t W , which leads to t P by taking Ws`

Ž .2 PLrR . The result for the Ragone plot, Es t P , willb `

be presented in dimensionless variables in the following
sub-section.

4.2. Dependence on the type of friction

Three different types of friction forces are often ob-
served in physical systems. First, Coulomb friction is

˙Ž .velocity independent, F sysign Q K , and is observedfr C

in many mechanical systems. Secondly, Stokes friction is
˙proportional to the velocity, F syK Q, and occurs usu-fr S

ally in viscous flow. Thirdly, Newton friction is propor-
˙ ˙2Ž .tional to the kinetic energy, F syK Psign Q Q , andfr N

occurs in weakly turbulent flow. Dissipation in electric
systems corresponds to Stokes friction with K sR, ac-S

cording to the fact that a current can be understood as a
viscous flow of charge carriers. In an inductive ESD,

Ž Ž ..Stokes friction gives the Ragone curve Eq. 13 , which
can be expressed in the dimensionless units e s2 E rLI 2

S i 0

and psPrRI 2 as0

1
e p spln 1q . 15Ž . Ž .S ž /p

In the presence of a finite bypass resistance, the discus-
sion at the end of the previous subsection leads to

dw1
e p sp . 16Ž . Ž .HS 4 pR 2 p

wqRb 4Rp
1q 1y( R wb

The result is shown in Fig. 5 by the dashed double-dotted
curve. One clearly observes a sharp drop at high power
PfR I 2.b 0

Ž .In the following, we compare the result of Eq. 15 with
the Ragone plots for the kinetic systems with Coulomb and
Newton friction.

˙Replacing RQ by the Coulomb friction constant, K ,C
˙Ž .in Eq. 1 with V'0, leads to the ODE LIqK syPrI.C

Ž .Integration of this ODE and putting I t s0 yields the`

Ž .Ragone curve E P sPt . In dimensionless units e sC ` C

E rE , psPrK I , the Ragone plot readsC 0 C 0

1
e p s2 p 1ypln 1q . 17Ž . Ž .C ž /ž /p
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An analogous calculation leads to the Ragone curve
Ž .E P for Newton friction, which reads in the dimension-N

less units e sE rE and psPrK I 3 as followsN N 0 N 0

2r32 p
y1r3' ' 'e p s 3 arctan 2 p r 3 y1r 3 18� 4Ž . Ž .ž ŽN 3

1 1qp
qpr6 q ln . 19. Ž .3½ 51r3 /2 1qpŽ .

The three cases are shown in Fig. 5. Note that the
power is scaled with respect to the initial internal loss

Ž .power, I F ts0 , hence, a direct comparison of efficien-0 fr

cies is not reasonable from this scaled figure.

5. General cases

The previous discussion pretends that the Ragone curve
of an arbitrary dynamic system can be simply derived

Ž .analytically or numerically, be it of the form of Eq. 1 , be
it more general. For example, it is in principle straightfor-
ward to derive Ragone plots for a hybrid system consisting
of two different batteries being parallel, or battery and
capacitor, etc. In general, however, things are far more
complicated. ‘General’ means that both potential energy
and inductive energy appear. As an illustration, we con-
sider the simple example where the ideal battery is coupled

Ž .in series to an inductance L inset Fig. 6 . Using the
Ž .definitions of the previous sections, Eq. 1 can be written

as

R
˙LIsy Iy I Iy I , 20Ž . Ž . Ž .q yI

Ž .where the I are given in Eq. 2 and are obviously steady"

Ž .states of Eq. 20 . Since I G I G0, it turns out that I isq y q

Ž .Fig. 6. Normalized Ragone curves of the battery with inductance inset
for various values of LU r8 R2 Q .0 0

linearly stable, while I is unstable. Indeed, replacementy
Ž .of I in Eq. 20 by the weakly perturbed steady states,

I qD I, leads to an ODE for the perturbation D I. Since"

D I is assumed to be small, only the linear terms are
˙considered. The resulting ODE is of the form D Isl D I,"

where " indicates the steady state I under considera-"

tion. One readily finds that l is negative while l isq y
positive, such that perturbations of I and I are dampedq y
out and increase with time, respectively. A similar behav-
ior is valid for the capacitor. In other words: in the
presence of an inductance, the solution needed for the

Ž .Ragone plot here: I is not stable and cannot be obtainedy
by using a load with UsPrI.

This forces us to go back to physics and to the mod-
elling of an element which draws a constant active power.
Let us recall: for the ideal battery without inductance, the

Žconstant power sink is just a constant resistance active
.power sink . In the general case, however, the load could

be a general impedance with a certain apparent power. An
appropriate reactance could remove the instability. In the
following, we sketch how this works for the battery with
inductance by an infinitesimal over-compensation of the
inductance.

Ž .Consider thus a load in Eq. 1 with a voltage
˙UsP rIyL I, instead of only UsPrI. We do not ask0 P

how the load is able to keep this voltage–current relation,
but consider it rather as a black box containing probably
some complicated power electronics for appropriate con-
trol. Furthermore, since we are mathematically faced with
a first-order ODE, we have to specify the realistic initial

Ž .conditions. We suppose that I t™0 ™0. The load power
Ž . 2is given by PsUIsP y L r2 d I rd t. Because I is a0 P

function of time, P is not constant as required. We take
L sLqdL with dL positive and very small. Hence, LP

Ž .has to be replaced by ydL in Eq. 20 . Due to the change
˙of the sign of the coefficient of I, the steady states I"

interchange their stability properties: I becomes stable.y
Due to the smallness of dL, the relaxation time which is
proportional to dL can be made arbitrarily small. Summa-
rizing, I relaxes very fast to the desired solution I . In they
limit dL™ 0, the power is practically constant, PsP ,0

except in a small initial time interval. Up to ts t , the`

Ž . 2energy gained by the load is E P sPt yLI r2, were`

Ž . Ž . Ž .we used I 0 s0 and I t s I s I . The time t is` y `

Ž .obtained from Eq. 3 . We recognize that for constant
current I, the energy LI 2r2 is stored in the inductance,
which reduces the total amount of available energy. How-
ever, at ts t , this secondary energy can be recovered by`

a zero resistance bypass across the battery, and running the
whole device as an inductive ESD with initial energy

2 Ž .LI r2. Using the result of Eq. 13 , we finally obtain the
Ž .Ragone curve primary and secondary energy

PQ L RI 2
0 2E P s q P ln 1q yRI . 21Ž . Ž .bi ž /ž /I 2 R P
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Fig. 7. Maximum available battery power as a function of the normalized
inductance.

Ž . Ž .with I' I P from Eq. 2 . As one expects, if L isy
small, one has only a weak correction to the Ragone curve
of the pure battery; this fact is not mathematically trivial
since adding an inductance corresponds to a singular per-
turbation of a device storing only potential energy. The

Ž .result of Eq. 21 can be expressed in dimensionless units,
e sE rU Q and ps4RPrU 2.bi bi 0 0 0

1 p
e p s 22Ž . Ž .bi 2 '1y 1yp

2'LU 1y 1ypŽ .0
q p ln 1q 23Ž .2 ž /p8 R Q ž0

2'y 1y 1yp , 24Ž ./Ž .
which is shown in Fig. 6 for various values of the induc-
tance in units of 8 R2 Q rU . In general, the presence of an0 0

inductance lowers the available energy and the maximum
power of a battery. Moreover, it turns out that for suffi-
ciently large inductance, E s0 for P-U 2r4R. In Fig.bi 0

7, the dependence of P on L is shown in dimensionlessmax

units.

6. Conclusion

We introduced a mathematical scheme for the calcula-
tion of the Ragone plots of arbitrary energy storage de-
vices. One has to solve the dynamic problem of the circuit
of Fig. 2 with a load drawing a constant power, and to
determine the time t when the ESD fails to be able to`

provide the desired power P. The Ragone curve is then
Ž . Ž .given by E P sPt P . It is important that in the case`

Ž .where there is more than one solution branch, E P ,1

Ž .E P . . . , the Ragone plot belongs to the maximum en-2
Ž . � Ž .4ergy, E P smax E P .n n

In the case of an ESD containing purely kinetic energy
or purely potential energy, the power sink can be modelled

˙ ˙Ž .by a voltage or a force equal to yPrQ, where Q is the
velocity of the dynamic variable. For the battery and the
SMES, additional loss mechanisms as leakage and ohmic
bypass, respectively, were included.

It turns out that, for realistic cases, a finite available
energy is restricted to a finite power region 0-P-P .max

For ESD storing potential energy, the high and low power
limit is determined by internal friction losses and leakage,
respectively. For ESD storing kinetic energy, the low and
high power limit is determined by internal friction and
bypass losses, respectively. As one result, a consideration
of practical Ragone plots allows to draw conclusions for
leakage and loss mechanisms. As another result important
for engineers, it is possible to figure out bounds for
leakage, loss, etc., if one focusses on a specific applica-
tion.

In the general case of mixed energy devices, the load is
a more complicated device, containing reactive parts, in
order to keep a constant active power. As an illustrative
example, we discussed the battery with series inductance,
where the load has to compensate the inductive voltage.
For the sake of clearness, the examples discussed in this
paper were throughout analytically solvable.

We note that there exist different ways to calculate
energy–power relations of ESD. An example is provided
by a very convenient linear approach in the case where the
information on the frequency dependent impedance of the

w xESD is given in Ref. 5 . However, we believe the present
approach to be the most natural one.
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